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Abstract

We describe an instrumentation of TCP/IP that monitors TCP connections and pro.
vides values of internal variables of the Implementation. We define Interface events for a
TCP/IP connection, describu how traces are obtained, and how application processes ini-
tiate trace collection. The instrumentation has been implemented in 4.3BSD UNIX.1 The
instrumented TCP/IP provides a flexible environment for experimental studies. Using the
instrumentation, we have studied the performance of different roundtrip-time estimators
in the Internet environment. One conclusion of our study Is that clock resolution is an
important parameter, and the resolution currently used In UNIX Implementations of TCP
is woefully inadequate. Another conclusion is that, with an adequate clock resolution, a
recently proposed estimator performs substantially better than the estimator suggested in-.,
the TCP specifications. r? _ , ' "7"- , ,. _ *
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1 Introduction

The Transmission Control Protocol (TCP) [14] is a connection-oriented,
transport layer protocol that is used extensively in computer networks, both
local-area and wide-area. TCP operates above the Internet Protocol (IP)
[13], and provides reliable data transfer service to application protocols, such
as file transfer and remote login.

IP provides TCP with virtual communication channels between every
two host computers of the network. However, the virtual channels are un-
reliable, especially in a wide-area network, such as the Internet [5], where
the channels are implemented by store-and-forward routing. They can lose,
reorder and duplicate messages in transit. Furthermore, they display con-
gestive behavior, by which we mean that their delay and loss characteristics
depend significantly on the number of messages in transit in the channel.
Typically, once this number exceeds a certain threshold, congestion sets in;
message delays increase drastically and throughput levels off or decreases.

To achieve reliable data transfer over such virtual channels, TCP uses a
sliding window mechanism, involving data sequence numbers, acknowledge-
ment messages, send and receive windows, and retransmissions. Consider
data transfer from a source application entity to a destination application
entity. Let us refer to the TCP entity at the source (destination) as the
source (destination) TCP entity.

The source application entity periodically produces data and passes it to
the source TCP entity, which assigns increasing sequence numbers to succes-
sive data octets. The source TCP entity buffers the data octets until they
are acknowledged by the destination TCP entity. The send window refers
to the set of (contiguous) sequence numbers corresponding to the buffered
data. Periodically, the source TCP entity sends packets, each containing one
or more contiguous data octets accompanied by the sequence number of the
first octet and the number of octets.

The destination TCP entity maintains a set of (contiguous) sequence
numbers, referred to as the receive window. Data octets below the receive
window have been passed to the destination app , i..On entity. Data octets
received out of sequence but within the receive v. i .v are buffered. Peri-
odically, the destination TCP entity sends an acknowledgement indicating
the current receive window.

The source TCP entity maintains an estimator for the roundtrip time.
When the source TCP entity sends a packet, it starts a retransmission timer
with a timeout equal to the current value of the estimator. If the timer
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expires and the packet is not yet acknowledged, the packet is retransmitted.
While the sliding window mechanism effectively ensures that data is not

delivered out of sequence [18], obtaining good performance over congestive
channels is an open research area that is becoming increasingly important
as networks become larger and more heterogeneous [4, 7, 8, 11, 12, 20].

The performance of a TCP connection depends on various policies em-
ployed by the TCP entities regarding transmission, retransmission, round-
trip time estimation, window sizes, etc. Due to the congestive nature of
the channels, there is considerable interaction between the policies and the
amount of congestion in the network. To put it another way, a TCP imple-
mentation with bad policies, not only offers low performance to its applica-
tion entities, but can also severely degrade the overall performance of the
network by in roducing congestion.

To understand the behavior of such a complex system, it is essential to do
experimental work with instrumented TCP/IP implementation. Recently,
there has been much effort in this direction [3, 4, 6, 7, 12, 17]. Cabrera et al
[3] have studied TCP connections across two Ethernets connected by a VAX
gateway. They examine throughput versus TCP packet size. Van Jacobson
[6, 7] has studied TCP connections across two 1OMbs Ethernets connected by
a succession of IP level links, including a bottleneck link of 230 Kbs. He has
implemented algorithms for roundtrip-time variance estimation, exponential
retransmission backoff, and slow start. Clark [4] has studied connections
across Ethernets connected by gateways, and has implemented policies that
reduce congestion. Nagle [12] has done similar work over local and wide-
area connections. Seo et al [17] have studied the performance of SATNET,
which links the Internet in North America to European networks. SATNET
itself consists of four nodes fully interconnected by two multi-access 64 Kbs
satellite channels with a propagation delay of 0.8 seconds.

There are two facilities available in UNIX for studying network behav-
ior. One is the TCP trace facility, which works by setting the SO.DEBUG
option on BSD sockets. This is useful for debugging connections, but not for
gathering performance data, because it uses the kernel printf routine to print
state and packet information while processing a packet. The kernel printf
routine is not interrupt driven, and all system activities are suspended, while
it is executing. This can skew the observations considerably. The other fa-
cility is the tcpdump program, which is used for passive monitoring from
a host on the same local network as the test host. This facility does not
affect the test host, but cannot access internal parameters of TCP, such as
the send window.
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Our goal was to obtain a general instrumentation of TCP/IP that would
allow us to study transient and steady-state correlations between different
parameters of interest, in both local-area and Internet environments.

Our Instrumentation

In this paper, we discuss an instrumentation of TCP/IP, that has been
implemented in 4.3BSD UNIX2 and is currently running on a VAXstation
3200'. Given a TCP connection between two applications, say a client and a
server, our instrumented TCP/IP logs an entry for every packet that crosses
an interface. Each log entry contains the following information: the time
of occurrence as indicated by a local clock, values of different fields on the
packet, and current values of identified state variables of the connection. Log
entries can be recorded either at the client host, or at the server host, or at
both hosts. In each host, the log entries are collected in a trace. Logging
can be initiated by either the client or the server, or by both. In the case
of logging at both client and server hosts, one option is to include a unique
transmission number in each TCP packet sent. This allows identification of
lost and duplicate packets.

An extremely powerful use of this instrumentation is to have both the
client and the server on the same host, with the packets being routed via
one or more specified gateways. In this case, there is a single trace for both
ends of the connection. From this trace, we can obtain parameters such
as one-way delay of each packet, number of packets in transit, number of
packets lost, etc., and study the evolution of these parameters with time
and their cross-correlations. This capability of the instrumentation appears
to be unique.

Having both client and server on the same host has other advantages.
It avoids the need for synchronizing the clocks in two hosts. It allows us to
experiment with multi-gateway channels in the Internet with only a single
host running the instrumented kernel.

We have also developed a set of post processing tools to analyze the
trace and present results in statistical and graphical forms. With these tools
our system provides an excellent environment for performing experimental
studies. Due to the detailed information available about the behavior, this
instrumentation can be used to validate analytic models of protocol behavior
(such as in [1, 9]), which often state the dynamic properties of different

2A preliminary version was also implemented in SUN OS 3.2.
3VAXstation is a trademark of Digital Equipment Corporation.
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variables.

Evaluation of roundtrip-time estimators

The roundtrip time of a packet is the time interval between sending the
packet and receiving its acknowledgement. In TCP, the roundtrip times
observed by a TCP entity are the only information that it has concerning
the amount of congestion currently in the network. It uses these roundtrip
times to maintain an estimate of the current roundtrip time. When a packet
is sent, this estimate is used to set the retransmission timeout of the packet.

Clearly, a good roundtrip-time estimator is essential for good TCP per-
formance. If the estimate is too high, packet losses will be detected late. As
a result, retransmissions will be delayed and throughput will decrease. If
the estimate is too low, the TCP entity will retransmit packets that are still
in transit. This may lead to congestion [12].

We have used our instrumented TCP/IP to evaluate the performance of
different estimators. In this report, we investigate the effect of the clock reso-
lution used to measure the roundtrip times. We also compare the roundtrip-
time estimator suggested by Van Jacobson [7] against the one suggested in
the TCP specification [14]. The error for a packet is defined as the difference
between the value of the estimator at the time of sending the packet and the
roundtrip time experienced by the packet. The sample standard deviation
of these errors is the metric we use to evaluate the estimator.

Organization of the rest of the paper

In Section 2, we discuss the design issues involved in instrumenting a
TCP/IP implementation. In Section 3, we discuss the UNIX implementation
of the instrumentation. In Section 4, we discuss some experiments. In
Section 5, we conclude and suggest future extensions of this work.
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2 Instrumentation of TCP/IP

Figure 1 illustrates the protocol organization between two hosts A and B
connected via the TCP/IP protocol. APPA, TCPA and IPA are the Appli-
cation, TCP, and IP entities in host A, respectively. The entities in host
B are organized similarly. These entities define three interfaces, namely,
APP/TCP, TCP/IP, and IP/Network. Packets can cross an interface in
either direction. The natural time to collect information is when a packet
crosses an interface.

HOSTA HOSTB

APPA APPB
(data source) (data sink)

TCPA TCPB I

I P~ f I, I

IPA IPB

L---------J L---------

NETWORK

Figure 1: Organization of a TCP connection

2.1 Data Logging

Most application entities communicate according to the client-server model.
In this model, an application entity is either a server or a client. Servers
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provide a service (e.g. file transfer) to clients. Only clients can initiate
requests for service.

An application entity can request either local logging or two-host logging.
In local logging, only packet crossings on local host interfaces are logged. In
two-host logging, in addition to logging at the local host, the remote host is
requested to start logging at its interfaces. This request can be conveyed by
sending a transmission number in the TCP option list.

Successive TCP packets (including retransmissions) have consecutively
increasing transmission numbers, starting with 1. The transmission num-
ber is sent only if at least one of the applications has requested two-host
logging. On receiving a packet with a transmission number in it, the TCP
entity starts logging for that connection and begins to include transmission
numbers in outgoing packets.

A special case of two-host logging is to have both the client and the
server on the same host, with the packets of the connection being routed via
one or more specified gateways (using the IP LSRR option [101).

2.2 Format of a Log Entry

A log entry is made when a packet crosses an interface. Every log entry con-
tains a timestamp obtained from a clock in the host, source and destination
port numbers, and the transmission number. Additional fields in the log
entry depend on the interface at which it is logged and are described below:

Application/TCP interface:

* Number of outstanding octets (i.e. number of octets given by the
application that have not been acknowledged)

TCP/IP interface:

o Fields from the packet:

send sequence number

acknowledgement sequence number

receive window size

packet size

packet header size

TCP header flags
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send window size

* Outstanding data in the connection at that host.

IP/Network interface:

* Fields from the packet

IP time to live

IP header length

IP packet length

The trace of a connection contains (arguably) all the information needed
for analysis. From it, we can extract the values of state variables at different
instants, study relationships between them, and obtain performance mea-
sures.

For example, a packet is considered lost, if there is a log record indicating
it was sent but none indicating that it has been received. The number of
times an octet has been retransmitted can be obtained by scanning the log
records of send events. The throughput of a connection is the number of
octets sent, divided by the total time of the connection.

2.3 Implementation Issues

A major requirement of the instrumentation is that it should have minimal
effect on the results.

A log entry is appended to the trace every time a packet crosses an
interface between the two entities. To minimize the effect of logging, the log
entry for a packet is made after the packet has been sent.

Because the number of packets sent in a connection can be large, the size
of the trace can exceed the size of physical memory. However, we cannot
allow the TCP or IP entities to append log entries to a disk file, because
that would be very slow, thereby affecting the experiment. Our choice was
to append the log entries to a buffer in physical memory. A reader process
periodically transfers these entries to a disk file.

Access to the shared memory by the TCP entity and the reader process
has to be mutually exclusive. We try to keep the critical section access to
minimum. Our method is to have a linked list of buffers, with the critical
section involving only the modification of pointers. The reading and writing
of the buffers is done outside the critical section. If there is no empty buffer
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available, TCP and IP do not make a log entry. This avoids blocking when
the reader process is slow. 4

The logging of a connection should not affect other connections that
have not opted for logging. In our implementation, we set a flag for each
connection for which logging is desired. No logging is done if this flag is not
set.

4Also, the user may not have started the reader process.
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3 Implementation under UNIX

In 4.3BSD UNIX, the TCP/IP routines are part of the kernel. Here we de-
scribe briefly the modifications that we have made to the kernel. A detailed
description can be found in [15].

The TCP and IP entities write their log entries in main memory. For
this purpose, a kernel memory area that is accessible to the TCP and IP
routines is required. The tcp init() routine, which is executed as a part
of kernel initialization procedure, has been modified to allocate a block of
memory. This block is organized into two linked lists of records - the empty
list and tlh, full list. Each record can hold one log entry. Initially, all the
records are in the empty list.

When a packet crosses an interface, the modified TCP and IP routines
write a log entry in an empty record, and append it to the full list. If there
is no record in the empty list, no log entry is appended.

There is a reader process that reads log entries from the memory and
writes them to a disk file. The reader process views the memory as a read-
only device called netlog. A device driver has been written for this pseudo-
device.

The reader process is started at the beginning of the experiment and runs
throughout the experiment. It employs blocking I/O so that it is suspended
when there are no records in the full list. It is woken up by the TCP and IP
entities when they append a log entry to the full list. The TCP/IP entities
and the netlog device driver ensure that accesses to the free and empty lists
are mutually exclusive by raising the priority of the cpu.

The traces of all the connections are written in the same file. The trace
for a particular connection can be extracted during post processing.

3.1 Application Interface

An application entity performs different activities to establish a connection,
depending on whether it is a client or a server [101. A server entity executes
the following steps:

S1 : Inform the local TCP entity of its willingness to provide service by
creating a socket.

S2 : Inform the TCP entity that it is ready to receive service requests.

S3 : Wait for an incoming connection request from a client entity.

S4: Service the connection until termination.
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A client entity executes the following steps:

C1 : Inform the local TCP entity of its need to get service. A socket is
created for the client.

C2 : Request connection to the server.

C3 : Once the connection is established the client may begin requesting
service.

UNIX provides the setsockopt() call for applications to set different
socket options. We have modified the setsockopt() call such that the logging
option can also be set by an application entity.

For each connection, UNIX maintains a number of data structures to
support inter-process communication. Here, we mention the ones relevant
to our discussion. For each connection in the system, three structures, called
tcpcb, inpcb, and socket are maintained. Tcpcb contains the values of TCP
state variables. Inpcb contains the protocol independent information like
routing entry and the IP options. Socket has pointers to send and receive
buffer queues. These structures have pointers to each other. The inpcbs
of all the TCP connections in the system are linked in a list. We keep
the transmismion number for a connection in a separate mbuf (the unit of
memory buffer in the UNIX kernel), which is accessed through a pointer
in tcpcb. Recall that the transmission number is used to uniquely identify
packets (see 'Our Instrumentation' subsection in Section 1).

3.2 Modifications to TCP/IP Routines

The TCP/IP routines have been modified to append log entries to the ker-
nel memory area. In our current implementation, we have instrumented
the TCP/IP and the IP/Network interfaces. Here we briefly describe the
modifications that have been made to the TCP/IP routines.

Packet from TCP to IP: The tcp.output() routine takes the data to
be sent from the socket queues. It appends the TCP header to the data and
passes the packet to IP through a call to ip.outputo. The tcp.output() rou-
tine has been modified to append a log entry at this stage. The timestamp
is obtained just before the call is made. The log entry is appended after the
call returns, thereby avoiding a delay (due to logging) in sending the packet.

Packet from IP to Network: IP receives a packet from TCP through
the ip-output() routine. This routine has been modified to append a log
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entry just before it makes a call to the network interface driver. It decides
whether or not to log by scanning the flags passed to it by tcp.outputo.

Packet from Network to IP: The routine that handles incoming pack-
ets for IP is ip.intro. It removes the packet from the queue and determines
whether the packet is destined for the local host or is to be forwarded to
another host. In the former case, it passes the packet to the upper layer
protocol. The ip.intr() routine has been modified to append a log entry just
before calling the upper layer protocol. The time stamp for this entry is
taken in the beginning of the routine. To decide whether the connection
to which the packet belongs has the logging option set, the tcpcb of this
connection is examined.

Packet from IP to TCP: The tcp.input() routine processes an incom-
ing packet for TCP. It calls in.pcblookup() to determine which connection
the packet should go to. The tcp.input() routine has been modified to ap-
pend a log entry if that connection has the logging option set.

Two special cases arise at this stage.

(a) When a SYN packet is received for a socket, TCP creates new instances
of the socket, the inpcb, and the tcpcb data structures for the new
connection. This portion of tcp-input() has been modified to determine
whether the parent socket had the logging option set. If it did, then
tcp-input() sets the option for the new socket as well.

(b) If a packet is received with the transmission number in the TCP op-
tions, the modified tcpinput() routine sets the two-host logging option
for the connection.

The Transmission Number: Conventional TCP uses only one option,
TCP-MAXSEG, indicating the maximum segment size. This is sent along
with the SYN packets that the two hosts exchange while establishing a
connection. We have introduced another option called TCPTRNUM for the
transmission number. This opion is sent on every packet of a connection
that has two-host logging option set. The tcp.output() routine has been
modified to send the TCPTRNUM option.

The tcp.dooptions() routine processes the options in an incoming TCP
packet. This routine has been modified to recognize the TCPTRNUM
option. If a transmission number is present and the two-host logging option
has not already been set for the connection, then this routine sets the option.
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4 Evaluating Roundtrip time Estimators

We have performed a number of experiments using our instrumented TCP/-
IP. In this Section, we present some results to demonstrate the capabilities
of our instrumentation and to compare different roundtrip-time estimators.

The TCP implementation in 4.3 BSD UNIX maintains several vari-
ables for setting the retransmission timeout of a packet, namely: SRTT,
RTTVAR, RXT, Roundtrip-Timer, and Retransmission-Timer. SRTT is
the "smoothed" average of measured roundtrip times. RTTVAR is the
"smoothed" variance of measured roundtrip times. RXT is the current
retransmission-timeout estimate. Roundtrip-Timer is used to measure round-
trip time of one packet. Retransmission-Timer is used to indicate when to
retransmit.

When a packet is transmitted for the first time (i.e., contains no octet
that has been transmitted already) and Roundtrip-Timer is not active, TCP
records the sequence number of the first byte of the packet and starts the
timer. Every 500 ms, a software clock interrupt increments Roundtrip-Timer
by i.5 When an acknowledgement is received for that packet, The roundtrip
time, denoted RTT, for that packet equals the value of Roundtrip.Timer
multiplied by 500 ms. If the packet is retransmitted before its acknowledge-
ment is received, the roundtrip-time measurement is aborted.

Each time an RTT is obtained, three of the above variables are updated
as follows (this update scheme was introduced by Van Jacobson [7] and
differs from the suggested in the TCP specification [14]):

SRTT,,,w = a SRTT +(1 - a) RTT
RTTVAR,e, = a' RTTVAR +(l - a')(I RTT - SRTT I - RTTVAR)
RXTneiv = SRTTet + 2 RTTVARPew

TCP uses the values a = 7/8 and a' = 6/8.

When a packet is sent and Retransmission-Timer is not active, TCP sets
it to the current value of RXT. Every 500 ms, a software clock interrupt (the
same one that increments the active roundtrip timers) decrements the active
retransmission timers of all TCP connections on that host. If the packet is
not acknowledged before its Retransmission-Timer becomes zero, the packet
is retransmitted and the timer is set with a value equal to twice the previous
timeout value. If the packet is acknowledged before the timer becomes zero,

5 Actually, it increments the active roundtrip timers of all TCP connections on that
host.
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the timer is reset to the current value of RXT if and only if there is still
some outstanding packet.

From a trace, we can compute the roundtrip time of each packet. Us-
ing these, we can simulate the effect of different RXT functions. There is
an assumption underlying our treatment; namely, that the roundtrip times
experienced by the packets would remain the same. In reality, a different
RXT function can cause packet transmission times to be different from those
in the trace. This in turn can affect the network congestion and therefore
the roundtrip times of the packets. Our assumption corresponds to ignoring
this feedback effect. Certainly our assumption would be valid in situations
of low user load.

We now identify the packets whose roundtrip times are used in simulat-
ing the TCP RXT functions. First, we point out that TCP only uses the
roundtrip times of packets that were not retransmitted6 . Thus, let p,..., PN
be the sequence of such packets sent in the connection. From the trace, we
can obtain the transmission time, si, and the acknowledgement time, ai, for
each pi. We have RTT, = ai - si. Second, recall that a TCP entity uses
only one retransmission timer and one roundtrip timer. This means that
only the RTTi's of non-overlapping packets are used in simulating an RXT,
where pi overlaps with pi if and only if si < sj < aj.

Finally, we define the metrics used in evaluating an RXT function.

" Mean Square Error

MSE = N

where ei = RXTi - RTTi and RXTi is the retransmission-timeout
estimate at the time packet pi is sent.

" Mean Square Error of the Under-estimations

MSE- = V i29

where i ranges over the packet numbers for which ei < 0. (Packet
numbers are same as transmission numbers defined earlier.)

" Mean Square Error of the Over-estimations

MSE+

where i ranges over the packet numbers for which ei > 0.
6A packet is considered retransmitted if even one octet in this packet is retransmitted.
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MSE, MSE-, and MSE + indicate how close the roundtrip-time estimates
are to the actual roundtrip times of packets. A high value of MSE- implies a
large number of unnecessary retransmissions. A high value of MSE+ implies
large delays in retransmissions of lost packets, resulting in under-utilization
of the network.

Experiments
In each experiment that we describe here, there were two application

processes, a data source and a data sink. (See Figure 1.) Both processes
were on the host huginn.cs.umd.edu (which is a VAXstation 3200) at the
Computer Science Department at Maryland. All packets and acknowledge-
ments were routed via ucbvax.berkeley.edu at the University of California,
Berkeley.

In experiment 1, the source generated 1 octet of data every second for
1000 seconds (for a total of 1000 octets). This experiment was carried out
at night when the network load is typically low.

In experiment 2, the source generated 1000 octets of data 1000 times
(for a total of 106 octets). The data was generated as fast as the local TCP
entity could accept. This experiment was done during the day when the
network load is typically higher. For timestamping the log records, we used
the UNIX internal clock, with a resolution of 10 ms.

Experiment 1: Round trip times using 500 ms resolution
Figure 2 shows the RTTs, SRTT and RXT in experiment 1. The x-

coordinate is the packet number. Each dot (.) represents an RTT measure-
ment. Each asterisk (*) represents a packet lost in transit. 8 packets were
lost in transit. The values of SRTT and RXT were calculated assuming the
5OOms clock resolution used conventionally by TCP for RTT measurements.

Note that there is only one packet (number 683) whose RTT (1200 ms)
exceeds the RXT value (1000 ms) at the time of its transmission. We notice
from Figure 2 that TCP greatly overestimates the roundtrip time. The
values of MSE, MSE- and MSE + are 465, 6 and 465 respectively (also
shown in Table 1).

Experiment 1: Round trip times assuming 10 ms resolution
We want to study the effect of increasing the clock resolution on the TCP

roundtrip-time measurements. Figure 3 shows the RTTs of experiment 1,
and the values of SRTT and RXT assuming a 10 ms clock resolution for
RTT measurements. Note that our assumption that there is no feedback
effect is valid in this experiment because the packets are spaced 1 second
apart. Therefore, there is no interference between two successive packets.
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The values of MSE, MSE and MSE + are 102, 26 and 98 respectively.
It is clear from the Figures 2 and 3 and the values of MSE + in Table 1 that
RXT values are much closer to the RTTs if a 10 ms clock resolution is used.

dock res. MSE (-, +)
500 ms 465 (6, 465)

10 ms 102 (26, 98)

Table 1: Experiment 1 with different clock resolutions

Experiment 2: Round trip times using 500 and 10 ms resolution
Figure 4 shows the RTTs for experiment 2, and values of SRTT and RXT

assuming a 500 ms clock resolution for RTT measurements. 15 packets were
lost in transit in this experiment. Figure 5 shows the RTTs for experiment
2, and values of SRTT and RXT assuming a 10 ms clock resolution for RTT
measurements. Here, our assumption of ignoring the feedback effect may
not be valid.

The error metrics for these simulation are given in Table 2. We again
notice that an increased resolution of the clock results in RXT values to be
much closer to the RTTs.

clock res. MSE (-, +)
500 ms 785 (0, 785)

10 ms 136 (28, 134)

Table 2: Experiment 2 with different clock resolutions

Changing estimator parameters
The value of a controls how rapidly SRTT adjusts to changing network

conditions. A smaller value of a allows SRTT to adapt more swiftly. We next
simulate the TCP RXT estim2.tor with different values of a, with a' = a,
and using both 500 ms and 10 ms clock resolutions. Table 3 shows the
values of the error metrics for different values of a for experiment 1. Figure
6 shows these values graphically. Table 4 shows the values of error metrics
for different values of a for experiment 2. Figure 7 shows these values
graphically.

We observe that with clock resolution of 10 ms, MSE and MSE+ remain
approximately the same for different values of a. With clock resolution of
500 ms, MSE and MSE+ decrease as the value of a decreases.
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clock res. MSE (-, +) MSE (-, +) MSE (-, +) MSE (-, +)

500 ms 463 (6, 463) 363 (32, 361) 362 (32, 360) 84 (72, 44)
10 ms 102 (25, 99) 101 (27, 97) 106 (28, 102) 111 (30, 107)

Table 3: Experiment 1 with different values of a (a' = a)

_-" a - a = J _--

clock res. MSE (-, +) MSE (-, +) MSE (-, +) MSE (-, +)
500 ms 840 (0, 840) 509 (1,509) 425 (1,425) 258 (140, 217)

10 ms 139 (26, 137) 136 (29, 133) 140 (31, 136) 142 (32, 138)

Table 4: Experiment 2 with different values of a (a' = a)

Increasing the number of packets whose RTT is measured
Recall that TCP does not measure roundtrip times of overlapping pack-

ets. We now simulate the TCP RXT estimator assuming TCP measures
roundtrip times of all packets that are not retransmitted and whose ac-
knowledgements are not lost.

Figure 8 shows the values of SRTT and RXT for experiment 1 under
this assumption (along with observed RTTs). The error metrics are given
in Table 5. We see that there is no difference between Tables 5 and 3,
which is to be expected for lightly loaded conditions. Figures 9 and 10
show the values of SRTT and RXT for experiment 2. The error metrics are
given in Table 6. Comparing Tables 6 and 4, we observe that no significant
improvement is achieved by measuring the RTTs of more packets.

a=_a aa--- a-

clock res. MSE (-, +) MSE (-, +) MSE (-, +) MSE (-, +)
500 ms 463 (6, 463) 363 (32, 361) 362 (32, 360) 84 (72, 44)
10 ms 102 (25, 99) 101 (27, 97) 106 (28, 102) 111 (30, 107)

Table 5: Experiment 1 with RTTs measured of all possible packets

RXT estimator suggested in the TCP specification
The TCP specification [141 suggests that the retransmission timeout be

calculated as
RXT = 2 SRTT
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z T6
clock res. MSE (-, +) MSE (-, +) MSE (-, +) MSE (-, +)

500 ms 882 (0, 882) 452 (1, 452) 389 (0, 389) 251 (141, 207)
10 ms 148 (23, 147) 140 (28, 138) 141 (31, 138) 143 (33, 139)

Table 6: Experiment 2 with RTTs measured of all possible packets

We next give the error metrics assuming this estimator, for different
values of a, with a' = a. Table 7 gives the values for experiment 1 when
roundtrip time is measured only for non-overlapping packets. Table 8 gives
the values for experiment 1 when roundtrip time is measured for all possible
packets. Table 9 gives the values for experiment 2 when roundtrip time is
measured only for non-overlapping packets. Table 10 gives the values for
experiment 2 when roundtrip time is measured for all possible packets.

We notice that RXT is considerably higher than RTTs, irrespective of the
resolution of the clock measuring the RTTs, and of the number of packets
whose roundtrip time is measured. When we compare these Tables with
Tables 3-6, we see that this estimator is worse than Van Jacobson's estimator
[7], which is currently used in UNIX.

clock res. MSE (-, +) MSE (-, +) MSE (-, +) MSE (-, +)
500 ms 599 (0, 599) 686 (0, 686) 629 (0, 629) 544 (2, 544)

10 ms 555 (0, 555) 550 (0, 550) 550 (1, 550) 549 (1, 549)

Table 7: Expt. 1 with RXT = 2 SRTT and RTTs of non-overlapping packets

a___ =______ a = a= k a =

clock res. MSE (-, +) MSE (-, +) MSE (-, +) MSE (-, +)
500 ma 599 (0, 599) 686 (0, 686) 629 (0, 629) 544 (2, 544)
10 ms 555 (0, 555) 550 (0, 550) 550 (1, 550) 549 (1, 549)

Table 8: Expt. 1 with RXT = 2 SRTT and RTTs of all possible packets
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clock MSE (-, +) MSE (-, +) MSE (-, +) MSE (-, +)
500 ms 1109 (0, 1109) 800 (0, 800) 725 (0, 725) 627 (0, 627)

10 ms 673 (0, 673) 674 (0, 674) 675 (0, 675) 676 (0, 676)

Table 9: Expt. 2 with RtXT = 2 SRTT and RTTs of non-overlapping packets

I 6 4

a~i  C= a= a=

clock MSE (-, +) MSE (-, +) MSE (-, +) MSE (-, +)
500 ms 1224 (0, 1224) 824 (0, 824) 748 (0, 748) 662 (0, 662)

10 ma 700 (0, 700) 697 (0, 697) 697 (0, 697) 695 (0, 695)

Table 10: Expt. 2 with R.XT = 2 SRTT and RTTs of all possible packets
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5 Conclusion

In this report, we have described an instrumentation that can monitor se-
lected TCP connections. The instrumentation scheme is designed to collect
information at different interfaces in a TCP/IP implementation. The cur-
rent version is implemented in 4.3BSD UNIX.

The instrumentation provides information about various performance
measures and internal variables of an implementation. This can be useful
in better understanding the working of the implementation, which in turn
can help in determining optimal policies for TCP.

We have used the instrumentation to study the effect of different round-
trip time estimators. From the results presented in this paper, it is clear
that a high resolution clock is essential to obtain good estimates. It also
appears that the RXT estimator suggested by Van Jacobson [7] performs
better than the one suggested in the TCP specification [14].

Elsewhere [16], we have used our instrumentation to find the number
of retransmissions, packets in transit, loss rate, etc, to study response time
versus packet size, and to validate analytic models [1]. We believe that the
instrumentation described here can be done on any communication protocol,
to test the protocol, to measure its performance, and to validate analytic
models. The statistics provided by such instrumentation would be a good
reference point to compare TCP to other transport protocols. We are plan-
ning to instrument ISO protocol3 in the next version of BSD UNIX.

In the future, one can think of "log servers," just like file servers or re-
mote login servers. A log server would allow a remote client to establish
a connection, send or receive data according to a specified traffic pattern,
generate a local trace, and ship the trace over to the client at the end of the
experiment. This would allow TCP entities that do not have instrumenta-
tion to evaluate the performance of their policies.

Acknowledgement: We wish to thank Steve Miller of the University of
Maryland Institute for Advanced Computer Studies (UMIACS) for explain-
ing the internals of the UNIX interprocess communication mechanisms and
helping us throughout the implementation work.
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Figure 2. Experiment 1: Observed RTTs vs Packet Numbers. Simulated SRTTs
and RXTs vs Packet Numbers, assuming 500ms clock resolution in RTT

values.
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Figure 1. Experiment I: Observed RTTs vs Packet Numbers. Simulated SRTTs

and RXTs vs Packet Numbers, assuming 10ms clock resolution in RTT

values.
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Figure 4. Experiment 2: Observed RTTs vs Packet Numbers. Simulated SRTTs
and RXTs vs Packet Numbers, assuming 500ms clock resolution in RTT

values.
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Figure 5. Experiment 2: Observed RTTs vs Packet Numbers. Simulated SRTTs
and RXTs vs Packet Numbers, assuming l1ins clock resolution in RTT
values.
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Figure 6. Experiment 1: Error metrics vs OC with c.. of.
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Figure 7. Experiment 2: Error metrics vs o. with oE. =cW.
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Figure 8. Experiment 1 with simulated SRTTs and RXTs vs Packet Numbers,
using RTTs of all possible packets.
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Figure 9. Experiment 2 with simulated SRTTs and RXTs vs Packet Numbers,

using RTTs of all possible packets, assuming 500ms clock resolution

in RTT values.
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Figure 10. Experiment 2 with simulated SRTTs and RXTs vs Packet Numbers,
using RTTs of all possible packets, assuming l1ins clock resolution

in RTT values.
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